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Supplementary Notes

1 MRMix estimator

In this section, we give the details on the derivation of MRMix estimator. We

first introduce a set of notations. Denote by �̂

jx

and �̂

jy

the GWAS estimates

of the e↵ects of SNP j on exposure X and outcome Y , respectively. Let s

jx

and s

jy

be the corresponding standard errors, which are considered as known

constants. The causal e↵ect of X on Y , denoted by ✓, is our quantity of interest.

Denote by u

jx

and u

jy

the direct e↵ect of SNP j on X and Y , i.e. the e↵ects

not mediated by the other variable. The GWAS e↵ect size �

jx

and �

jy

satisfies

�

jx

= u

jx

, �

jy

= u

jy

+ ✓u

jx

.

In the rest of this section, we drop subscript j for simple notations.

We model the joint distribution of u
x

and u

y

using a bivariate mixture model

with the following components (Figure 1a):

1. u

x

⇠ N(0,�2
x

), u
y

= 0 (valid IVs).

2.
�
u

x

u

y

�
⇠ N

⇣�
0
0

�
,

�
�

2
x

�

xy

�

xy

�

2
y

�⌘
(horizontal pleiotropy).

3. u

x

= 0, u
y

⇠ N(0,�2
y

).

4. u

x

= u

y

= 0.

Denote the mixture probabilities of case 1-4 by ⇡1,⇡2,⇡3,⇡4 respectively. The

model can also be written as
0

@u

x

u

y

1

A ⇠ ⇡1

0

@N(0,�2
x

)

�0

1

A+⇡2N

0

@

0

@0

0

1

A
,

0

@ �

2
x

�

xy

�

xy

�

2
y

1

A

1

A+⇡3

0

@ �0

N(0,�2
y

)

1

A+⇡4

0

@�0

�0

1

A
,

where �0 is the point mass at 0.

With ✓ being the true causal e↵ect, the residual �
y

� ✓�

x

satisfies

�

y

� ✓�

x

= (u
y

+ ✓u

x

)� ✓u

x

= u

y

,

which have the following distribution under cases 1-4:
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1. �

y

� ✓�

x

= 0.

2. �

y

� ✓�

x

= u

y

⇠ N(0,�2
y

).

3. �

y

� ✓�

x

= u

y

⇠ N(0,�2
y

).

4. �

y

� ✓�

x

= 0.

This holds because u

y

is exactly 0 in scenarios 1 and 4, and has distribution

N(0,�2
y

) in scenarios 2 and 3. Therefore, �

y

� ✓�

x

⇠ (⇡1 + ⇡4)�0 + (⇡2 +

⇡3)N(0,�2
y

) if ✓ is the true value. Under a di↵erent value ✓̃, The working

residual �
y

� ✓̃�

x

also has a mixture normal distribution, with less point mass

at zero:

�

y

� ✓̃�

x

=(�
y

� ✓�

x

) + (✓ � ✓̃)�
x

= u

y

+ (✓ � ✓̃)u
x

=⇡1N(0, (✓ � ✓̃)2�2
x

) + ⇡2N(0,�2
y

+ 2(✓ � ✓̃)�
xy

+ (✓ � ✓̃)2�2
x

) + ⇡3N(0,�2
y

) + ⇡4�0

In GWAS, we obtain noised estimates �̂
x

and �̂

y

of the e↵ect sizes �
x

and �

y

.

Assume that the GWAS for X and Y have no overlapping subjects (two-sample

MR). Then the corresponding distributions are

�̂

y

� ✓�̂

x

⇠(⇡1 + ⇡4)N
⇣
0, s2

y

+ ✓

2
s

2
x

⌘
+ (⇡2 + ⇡3)N

⇣
0,�2

y

+ s

2
y

+ ✓

2
s

2
x

⌘

�̂

y

� ✓̃�̂

x

⇠⇡1N

⇣
0, (✓ � ✓̃)2�2

x

+ s

2
y

+ ✓̃

2
s

2
x

⌘
+ ⇡2N

⇣
0,�2

y

+ 2(✓ � ✓̃)�
xy

+ (✓ � ✓̃)2�2
x

+ s

2
y

+ ✓̃

2
s

2
x

⌘

+⇡3N

⇣
0,�2

y

+ s

2
y

+ ✓̃

2
s

2
x

⌘
+ ⇡4N

⇣
0, s2

y

+ ✓̃

2
s

2
x

⌘
.

Note that for the true causal e↵ect ✓, there is enriched probability mass

⇡1+⇡4 at the ”null” component N
⇣
0, s2

y

+✓̃

2
s

2
x

⌘
; while for another value ✓̃ which

is not the true causal e↵ect, this probability mass is only ⇡4. This enrichment

is contributed by the valid IVs. Therefore, we propose a two-step algorithm to

estimate the causal e↵ect:

1. For each fixed ✓̃, fit a 2-component normal mixture model

�̂

y

� ✓̃�̂

x

⇠ ⇡0N

⇣
0, s2

y

+ ✓̃

2
s

2
x

⌘
+ (1� ⇡0)N(0,�2).

using EM algorithm to get the estimates of the unknown parameters as

⇡̂0(✓̃) and �̂

2(✓̃).
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2. Search over a grid of ✓̃ values and choose the one that maximizes ⇡̂0(✓̃) as

the estimate, i.e.

✓̂ = argmax

✓̃

⇡̂0(✓̃).

2 Asymptotic theory for MRMix estimator

2.1 Estimating equation and variance estimator

In this section, we formulate MRMix into an estimating equation and use asymp-

totic theory to derive the variance of MRMix estimator. Recall that for each

possible value of ✓, we fit a two-component mixture normal model on the resid-

uals

�̂

jy

� ✓�̂

jx

⇠ ⇡0N(0, s2
jy

+ ✓

2
s

2
jx

) + (1� ⇡0)N(0,�2).

across SNPs j = 1, 2, ...,M . Here ⇡0 is the probability mass of the ”null”

component and �

2 is the variance of the ”non-null” component. Define density

functions:

f1(�x

,�

y

, s

x

, s

y

; ✓) =
1q

2⇡(s2
y

+ ✓

2
s

2
x

)
exp

�
� (�

y

� ✓�

x

)2

2(s2
y

+ ✓

2
s

2
x

)

�
(1)

f2(�x

,�

y

, s

x

, s

y

; ✓,�2) =
1p
2⇡�2

exp
�
� (�

y

� ✓�

x

)2

2�2

�
(2)

f(�
x

,�

y

, s

x

, s

y

; ✓,⇡0,�
2) = ⇡0f1(�x

,�

y

, s

x

, s

y

; ✓) + (1� ⇡0)f2(�x

,�

y

, s

x

, s

y

; ✓,⇡0,�
2).

(3)

Also define �
x

= (�1x, ...,�Mx

), �
y

= (�1y, ...,�My

), �̂
x

= (�̂1x, ..., �̂Mx

),

�̂
y

= (�̂1y, ..., �̂My

), s
x

= (s1x, ..., sMx

) and s
y

= (s1y, ..., sMy

). Hence the

log-likelihood can be written as

l(✓,⇡0,�
2|�̂

x

, �̂
y

, s
x

, s
y

) =
X

j

log f(�̂
jx

, �̂

jy

, s

jx

, s

jy

; ✓,⇡0,�
2).
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The score functions are

@l

@⇡0
=
X

j

f1(�̂jx

, �̂

jy

, s

jx

, s

jy

; ✓)� f2(�̂jx

, �̂

jy

, s

jx

, s

jy

; ✓,�2)

f(�̂
jx

, �̂

jy

, s

jx

, s

jy

; ✓,⇡0,�
2)

(4)

@l

@�

2
= (1� ⇡0)

X

j

@

@�

2 f2(�̂jx

, �̂

jy

, s

jx

, s

jy

; ✓,�2)

f(�̂
jx

, �̂

jy

, s

jx

, s

jy

; ✓,⇡0,�
2)

. (5)

For a fixed ✓, we estimate ⇡0 and �

2 by solving the score equations. There-

fore, ⇡̂0 and �̂

2 are implicit functions of ✓. We write them as ⇡̂0(✓, �̂
x

, �̂
y

) and

�̂

2(✓, �̂
x

, �̂
y

) to reflect that they also depend on the e↵ect estimates �̂
x

and �̂
y

.

We omit s
x

and s
y

since they are viewed as known constants. Partial deriva-

tives @⇡̂0
@✓

and @�̂

2

@✓

can be computed using implicit function theorem. MRMix

estimator is obtained by maximizing ⇡̂0 over ✓, which is equivalent to

solving equation

@⇡̂0

@✓

= 0.

We further take the partial derivative of (4) and (5) over ✓:

0 =
@

@✓

⇣
@l

@⇡0

⌘
=

@

2
l

@⇡0@✓
+

@

2
l

@⇡

2
0

@⇡̂0

@✓

+
@

2
l

@⇡0@�
2

@�̂

2

@✓

0 =
@

@✓

⇣
@l

@�

2

⌘
=

@

2
l

@�

2
@✓

+
@

2
l

@�

2
@⇡0

@⇡̂0

@✓

+
@

2
l

@(�2)2
@�̂

2

@✓

.

Therefore 0

@
@⇡̂0
@✓

@�̂

2

@✓

1

A = �

0

@
@

2
l

@⇡

2
0

@

2
l

@⇡0@�
2

@

2
l

@�

2
@⇡0

@

2
l

@(�2)2

1

A
�10

@
@

2
l

@⇡0@✓

@

2
l

@�

2
@✓

1

A
. (6)

Solving equation @⇡̂0
@✓

= 0 is equivalent to solving

@

2
l

@(�2)2
@

2
l

@⇡0@✓
� @

2
l

@�

2
@⇡0

@

2
l

@�

2
@✓

���
⇡0=⇡̂0(✓,�̂

x

,�̂
y

),�2=�̂

2(✓,�̂
x

,�̂
y

),�
x

=�̂
x

,�
y

=�̂
y

= 0.

(7)

with respect to ✓. This is the estimating equation we use to derive the

asymptotic formula.

From here, define function S(✓,⇡0,�
2
,�

x

,�
y

) = @

2
l

@(�2)2
@

2
l

@⇡0@✓
� @

2
l

@�

2
@⇡0

@

2
l

@�

2
@✓

,

hence S

�
✓, ⇡̂0(✓, �̂

x

, �̂
y

), �̂2(✓, �̂
x

, �̂
y

), ˆ�
x

,

ˆ�
y

�
is equal to the left hand side of
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Equation (7). Expanding (7) w.r.t. ✓, we have

0 = S

�
✓̂, ⇡̂0(✓̂, �̂

x

, �̂
y

), �̂2(✓̂, �̂
x

, �̂
y

), ˆ�
x

,

ˆ�
y

�

⇡ S(✓, ⇡̂0(✓, �̂
x

, �̂
y

), �̂2(✓, �̂
x

, �̂
y

), ˆ�
x

,

ˆ�
y

) +
⇣
@S

@✓

+
@S

@⇡0

@⇡̂0

@✓

+
@S

@�

2

@�̂

2

@✓

⌘
(✓̂ � ✓)

Rearrange the terms and expand S(✓, ⇡̂0(✓, �̂
x

, �̂
y

), �̂2(✓, �̂
x

, �̂
y

), ˆ�
x

,

ˆ�
y

) w.r.t.

�̂
x

and �̂
y

✓̂ � ✓ ⇡ �
⇣
@S

@✓

+
@S

@⇡0

@⇡̂0

@✓

+
@S

@�

2

@�̂

2

@✓

⌘�1
S(✓, ⇡̂0(✓, �̂

x

, �̂
y

), �̂2(✓, �̂
x

, �̂
y

), ˆ�
x

,

ˆ�
y

)

= �
⇣
@S

@✓

+
@S

@⇡0

@⇡̂0

@✓

+
@S

@�

2

@�̂

2

@✓

⌘�1n
S(✓, ⇡̂0(✓,�

x

,�
y

), �̂2(✓,�
x

,�
y

),�
x

,�
y

)

+

MX

j=1

⇣
@S

@�

jx

+
@S

@⇡0

@⇡̂0

@�

jx

+
@S

@�

2

@�̂

2

@�

jx

⌘
(�̂

jx

� �

jx

) +

MX

j=1

⇣
@S

@�

jy

+
@S

@⇡0

@⇡̂0

@�

jy

+
@S

@�

2

@�̂

2

@�

jy

⌘
(�̂

jy

� �

jy

)
 

Therefore the asymptotic variance of ✓̂ can be expressed as

var(✓̂) ⇡
⇣
@S

@✓

+
@S

@⇡0

@⇡̂0

@✓

+
@S

@�

2

@�̂

2

@✓

⌘�2

� MX

j=1

⇣
@S

@�

jx

+
@S

@⇡0

@⇡̂0

@�

jx

+
@S

@�

2

@�̂

2

@�

jx

⌘2
s

2
jx

+
MX

j=1

⇣
@S

@�

jy

+
@S

@⇡0

@⇡̂0

@�

jy

+
@S

@�

2

@�̂

2

@�

jy

⌘2
s

2
jy

 

Plug in estimates ✓ = ✓̂, ⇡0 = ⇡̂0(✓̂, �̂
x

, �̂
y

) �

2 = �̂

2(✓̂, �̂
x

, �̂
y

), �
x

= �̂
x

and

�
y

= �̂
y

to get the variance estimate.

2.2 Partial derivative functions

The partial derivatives of the function S(✓,⇡0,�
2
,�

x

,�
y

) can be derived as

follows. Since the derivatives for �

jx

and �

jy

are in the same form, we write

them in terms of a unified notation �

j·.

@S

@✓

=
@

3
l

@(�2)2@✓

@

2
l

@⇡0@✓
+

@

2
l

@(�2)2
@

3
l

@⇡0@✓
2
� @

3
l

@�

2
@⇡0@✓

@

2
l

@�

2
@✓

� @

2
l

@�

2
@⇡0

@

3
l

@�

2
@✓

2

@S

@⇡0
=

@

3
l

@(�2)2@⇡0

@

2
l

@⇡0@✓
+

@

2
l

@(�2)2
@

3
l

@⇡

2
0@✓

� @

3
l

@�

2
@⇡

2
0

@

2
l

@�

2
@✓

� @

2
l

@�

2
@⇡0

@

3
l

@⇡0@�
2
@✓

@S

@�

2
=

@

3
l

@(�2)3
@

2
l

@⇡0@✓
+

@

2
l

@(�2)2
@

3
l

@⇡0@�
2
@✓

� @

3
l

@⇡0@(�2)2
@

2
l

@�

2
@✓

� @

2
l

@�

2
@⇡0

@

2
l

@(�2)2@✓

@S

@�

j·
=

@

3
l

@(�2)2@�
j·

@

2
l

@⇡0@✓
+

@

2
l

@(�2)2
@

3
l

@⇡0@✓@�j·
� @

3
l

@�

2
@⇡0@�j·

@

2
l

@�

2
@✓

� @

2
l

@�

2
@⇡0

@

3
l

@�

2
@✓@�

j·
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From Equation (6) we know that

@⇡̂0

@✓

=
⇣

@

2
l

@�

2
@⇡0

@

2
l

@�

2
@✓

� @

2
l

@(�2)2
@

2
l

@⇡0@✓

⌘.h
@

2
l

@⇡

2
0

@

2
l

@(�2)2
�
�

@

2
l

@⇡0@�
2

�2i

@�̂

2

@✓

=
⇣

@

2
l

@⇡0@�
2

@

2
l

@⇡0@✓
� @

2
l

@⇡

2
0

@

2
l

@�

2
@✓

⌘.h
@

2
l

@⇡

2
0

@

2
l

@(�2)2
�
�

@

2
l

@⇡0@�
2

�2i

⇡̂0 and �̂

2 are also functions of �
x

and �
y

. Similarly,

0

@
@⇡̂0
@�

j·

@�̂

2

@�

j·

1

A = �

0

@
@

2
l

@⇡

2
0

@

2
l

@⇡0@�
2

@

2
l

@�

2
@⇡0

@

2
l

@(�2)2

1

A
�10

@
@

2
l

@⇡0@�j·

@

2
l

@�

2
@�

j·

1

A
.

Hence

@⇡̂0

@�

j·
=
⇣

@

2
l

@⇡0@�
2

@

2
l

@�

2
@�

j·
� @

2
l

@(�2)2
@

2
l

@⇡0@�j·

⌘.h
@

2
l

@⇡

2
0

@

2
l

@(�2)2
� (

@

2
l

@⇡0@�
2
)2
i

@�̂

2

@�

j·
=
h

@

2
l

@⇡0@�
2

@

2
l

@⇡0@�j·
� @

2
l

@⇡

2
0

@

2
l

@�

2
@�

j·

i.h
@

2
l

@⇡

2
0

@

2
l

@(�2)2
� (

@

2
l

@⇡0@�
2
)2
i
.

To compute the partial derivatives of S, we need the second and third order
partial derivatives of the log-likelihood l. The second order derivatives are:

@

2
l

@(�2)2
= (1 � ⇡0)

X

j

@

2
f2

@(�2)2
f � (1 � ⇡0)

�

@f2
@�

2

�2

f

2

�

�

�

�

(�
jx

,�

jy

,s

jx

,s

jy

;✓,⇡0,�

2)

@

2
l

@⇡0@✓
=

X

j

@f1
@✓

f2 � f1
@f2
@✓

f

2

�

�

�

�

(�
jx

,�

jy

,s

jx

,s

jy

;✓,⇡0,�

2)

@

2
l

@⇡0@�
2

= �
X

j

f1
@f2
@�

2

f

2

�

�

�

�

(�
jx

,�

jy

,s

jx

,s

jy

;✓,⇡0,�

2)

@

2
l

@�

2
@✓

= (1 � ⇡0)
X

j

@

2
f2

@�

2
@✓

f � @f2
@�

2
@f

@✓

f

2

�

�

�

�

(�
jx

,�

jy

,s

jx

,s

jy

;✓,⇡0,�

2)

@

2
l

@⇡0@�j·
=

@f1
@�

j·
f2 � f1

@f2
@�

j·

f

2

�

�

�

�

(�
jx

,�

jy

,s

jx

,s

jy

;✓,⇡0,�

2)
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The third order derivatives are:
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3 Summary of existing methods of Mendelian

randomization

Inverse-variance weighted method (IVW): The IVW aggregates the ratio esti-

mators by taking a linear combination, weighted by the inverse of their variances

[7]. For SNP j, denote by �̂

jx

the GWAS estimate for the exposure X, by �̂

jy

the GWAS estimate for the outcome Y , and by ✓̂

j

the corresponding ratio esti-

mator. Let s
jy

be the standard error corresponding to �̂

jy

. The IVW estimator

is define by

✓̂

IVW

=

P
j

�̂

2
jx

s

�2
jy

✓̂

j

P
j

�̂

2
jx

s

�2
jy

Here �̂

�2
jx

s

2
jy

is an approximation of the variance of ✓̂
j

, assuming that the vari-

ance of �̂
jx

is small enough to be ignored.

Weighted median: The simple median estimator is the median of the ratio

estimators, with equal weight on each variant. The weighted median method

assigns weights w

j

to ratio estimators to improve e�ciency. The weight w

j

is

proportional to the inverse variance of ✓̂
j

and is normalized to sum to 1, i.e.

w

0
j

= �̂

2
jx

s

�2
jy

, w

j

=
w

0
jP

j

w

0
j

.

The estimator is defined by taking median of the ✓̂

j

’s based on the weighted

distribution [4].

Weighted mode: The weighted mode takes the mode of the estimated dis-

tribution of the ratio estimators, weighted by the same w

j

as the weighted me-

dian. This estimator is consistent under the ZEro Modal Pleiotropy Assumption

(ZEMPA) [8].

Egger regression: Egger regression fits a linear model �̂
y

= ✓0+✓�̂

x

and uses

the regression slope ✓̂ as estimate of the causal e↵ect and the intercept ✓̂0 to

quantify directional pleiotropy [3]. This method gives unbiased causal estimates

in the presence of directional pleiotropy but requires the InSIDE assumption.

LD score regression: Following notations in the main manuscript, let (u
x

, u

y

)

denote the direct e↵ects and (�
x

,�

y

) denote the total e↵ects. Let ✓ be the causal
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e↵ect. And it holds that

�

x

= u

x

, �

y

= u

y

+ ✓u

x

.

If the InSIDE assumption cov(u
x

, u

y

) = 0 holds across all SNPs, it follows that

cov(�
x

,�

y

) = cov(u
x

, u

y

) + ✓var(�
x

) and ✓ =
cov(�

y

,�

x

)
var(�

x

) =
⇢

g

h

2
x

, where ⇢

g

is the

genetic covariance between X and Y and h

2
x

is the heritability of X. LD score

regression can estimate both ⇢

g

and h

2
x

, hence can estimate the causal e↵ect ✓

[6, 5]. However, the InSIDE assumption is unlikely to hold across all SNPs since

two traits can share common genetic pathways. We still report the results since

it characterizes the e↵ects purely based on genetic correlation.

The LD score regression estimator ⇢

g

/h

2
x

is nearly equivalent to Egger re-

gression using the same set of SNPs. Under large sample size, Egger regression

estimate is approximately

✓̂

Egger

⇡ cov(�̂
y

, �̂

x

)

var(�̂
x

)
⇡ cov(�̂

y

,�

x

)

var(�
x

)
=

cov(�
y

,�

x

)

var(�
x

)
.

The last equation uses the fact the that error term of �̂

y

is independent of

�

x

. We can see that both methods estimate the same quantity, though using

di↵erent techniques.

4 Additional simulation settings

4.1 Allowing for SNPs of distinctly larger e↵ects

In Methods section, we describe the basic simulation setting where direct e↵ect

sizes of 200,000 independent SNPs are generated from the 4-component model

(Figure 1a) with parameters ⇡1,⇡2,⇡3,�
2
x

,�

2
y

,�

xy

. Here we describe a scenario

(Scenario B) that is adapted from Scenario A by allowing a small number of

SNPs to have distinctly larger e↵ects than others and those SNPs are more

likely to be valid IVs.

We now explain Scenario B by elaborating the changes to each mixture

component (Figure 1a) compared to Scenario A.
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• Component 1: Randomly draw 60 SNPs from this component to assign

largeX-e↵ects by u

x

⇠ N(0, 10�2
x

); for the rest of SNPs in this component,

simulate u
x

from N(0,�2
x

) - these are the SNPs with smaller e↵ects on X.

• Component 2: Randomly draw 20 SNPs from this component to assign

large e↵ects for X (SNP set 2.x); and independently draw 20 SNPs to

assign large e↵ects for Y (SNP set 2.y). If 2.x and 2.y overlap (which

is rare), we generate e↵ects sizes of the overlapping SNPs by
�
u

x

u

y

�
⇠

N

��
0
0

�
, 10
�

�

2
x

�

xy

�

xy

�

2
y

��
; for SNPs in 2.x but not in 2.y, generate e↵ect sizes

by
�
u

x

u

y

�
⇠ N

��
0
0

�
,

� 10�2
x

p
10�

xyp
10�

xy

�

2
y

��
; for SNPs in 2.y but not in 2.x,

generate e↵ect sizes by
�
u

x

u

y

�
⇠ N

��
0
0

�
,

�
�

2
x

p
10�

xyp
10�

xy

10�2
y

��
; for the rest of

the SNPs in this component, assign e↵ects by
�
u

x

u

y

�
⇠ N

��
0
0

�
,

�
�

2
x

�

xy

�

xy

�

2
y

��

- these are the SNPs with smaller e↵ects on both X and Y .

• Component 3: Randomly draw 60 SNPs from this component to assign

large Y -e↵ects by u

y

⇠ N(0, 10�2
y

); for the rest of SNPs in this component,

simulate u

y

from N(0,�2
y

) - these are the SNPs with smaller e↵ects on Y .

• Component 4: Zero e↵ects for both X and Y .

Two sets of parameter values are considered analogous to Scenario A:

• (B.1) 50% causal SNPs for X are valid IVs: ⇡1 = ⇡2 = 0.01.

• (B.2) 25% causal SNPs for X are valid IVs: ⇡1 = 0.005,⇡2 = 0.015.

For both scenarios, we set ⇡3 = 0.01, ⇡4 = 0.97, �2
x

= �

2
y

= 5 ⇥ 10�5, �
xy

=

0.5�
x

�

y

.

Take Scenario (B.1) as an example. There are 2,000 SNPs in each of Com-

ponent 1-3. There are 80 (0.04% of the total 200K) SNPs of larger e↵ects among

the 4,000 causal SNPs for X and 3/4 of them are valid IVs; however, among

the 3,920 SNPs of smaller e↵ects, only around 1/2 are valid IVs. This holds

similarly for Y . Scenario B is closer to the assumptions made by existing MR

methods.

10



4.2 Non-normal e↵ect size

We conduct simulations to study the performance of MRMix under non-normally

distributed e↵ect sizes. The e↵ect sizes are still generated from the four-

component model (Figure 1a), but follow Laplace and T distributions instead

of normal distribution.

4.2.1 Laplace distribution

For components 1 and 3, we simulate e↵ect sizes from univariate Laplace distri-

bution centered at 0 with variance �

2
x

and �

2
y

respectively, which have density

f1(x) =
1p
2�

x

exp(�
p
2|x|/�

x

), f3(y) =
1p
2�

y

exp(�
p
2|y|/�

y

).

For component 2, we use bivariate Laplace distribution with mean (0, 0) and

covariance matrix
�

�

2
x

�

xy

�

xy

�

2
y

�
, which has density

f

L

(x, y) =
1

⇡�

x

�

y

p
1� ⇢

2
K0

 
vuut2

�
x

2

�

2
x

� 2⇢xy
�

x

�

y

+ y

2

�

2
y

�

1� ⇢

2

!

where ⇢ =
�

xy

�

x

�

y

and K0(·) is the modified Bessel function of the second kind

[2].

4.2.2 T distribution

For components 1 and 3, we simulate e↵ect size from scaled univariate T distri-

butions - �
x

T20 and �

y

T20 respectively. Here T20 is the standard T distribution

with 20 degrees of freedom. For component 2, we use bivariate T distribution

centered at (0, 0) and shape matrix
�

�

2
x

�

xy

�

xy

�

2
y

�
, which has density[1].

f

T

(x, y) =
�[(⌫ + 2)/2]

�[⌫/2]⌫p/2⇡p/2
�

x

�

y

p
1� ⇢

2

"
1 +

1

⌫

�
x

2

�

2
x

� 2⇢xy
�

x

�

y

+ y

2

�

2
y

�

1� ⇢

2

#
.

where �(·) is the Gamma function, ⇢ =
�

xy

�

x

�

y

and ⌫ is the degrees of freedom.

We set ⌫ = 20.

11



Supplementary notes references

[1] Wikipedia - multivariate t-distribution. https://en.wikipedia.org/wiki/

Multivariate_t-distribution, 11 2017.

[2] Wikipedia - multivariate laplace distribution. https://en.wikipedia.org/

wiki/Multivariate_Laplace_distribution, 10 2018.

[3] Jack Bowden, George Davey Smith, and Stephen Burgess. Mendelian ran-

domization with invalid instruments: e↵ect estimation and bias detection

through egger regression. International journal of epidemiology, 44(2):512–

525, 2015.

[4] Jack Bowden, George Davey Smith, Philip C Haycock, and Stephen Burgess.

Consistent estimation in mendelian randomization with some invalid instru-

ments using a weighted median estimator. Genetic epidemiology, 40(4):304–

314, 2016.

[5] Brendan Bulik-Sullivan, Hilary K Finucane, Verneri Anttila, Alexander Gu-

sev, Felix R Day, Po-Ru Loh, Laramie Duncan, John RB Perry, Nick Pat-

terson, and Elise B Robinson. An atlas of genetic correlations across human

diseases and traits. Nature genetics, 47(11):1236, 2015.

[6] Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke,

Jian Yang, Nick Patterson, Mark J Daly, Alkes L Price, Benjamin M Neale,

and Schizophrenia Working Group of the Psychiatric Genomics Consortium.

LD score regression distinguishes confounding from polygenicity in genome-

wide association studies. Nature genetics, 47(3):291, 2015.

[7] Stephen Burgess, Adam Butterworth, and Simon G Thompson. Mendelian

randomization analysis with multiple genetic variants using summarized

data. Genetic epidemiology, 37(7):658–665, 2013.

[8] Fernando Pires Hartwig, George Davey Smith, and Jack Bowden. Robust

inference in summary data mendelian randomization via the zero modal

12

https://en.wikipedia.org/wiki/Multivariate_t-distribution
https://en.wikipedia.org/wiki/Multivariate_t-distribution
https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution
https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution


pleiotropy assumption. International journal of epidemiology, 46(6):1985–

1998, 2017.

13



Supplementary Figures 
 
 

 

Supplementary Figure 1. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies under null causal effects. The true effect " is 0. 
Estimates of association coefficient for SNPs across two traits are simulated assuming an 
underlying four-component model for effect-size distribution (Scenario A, see Methods), where 
SNPs could have direct effects on neither traits, only on #, only on $, or on both with the effects 
being correlated. The proportion of valid instruments, i.e. the SNPs which have only direct 
effects on # as a proportion of the total number of SNPs which are associated with #, are fixed 
at 50% or 25%. Mean (standard deviation) of causal estimates are reported over 100 
simulations. %& = (: sample size of the study associated with #; %): sample size of the study 
associated with $. Standard error bars higher than 60 are truncated and marked with *true-
value. The average number of IVs, defined as the SNPs which reach genome-wide significance 
(z-test * < 5×1001) in the study associated with #, is 14, 105, 399, 1135 and 1780 for (=50k, 
100k, 200k, 500k and 1000k, respectively. Source data are provided as a Source Data file.



 
Supplementary Figure 2. Reverse directional analysis of MRMix and alternative methods 
in simulation studies where the genetic correlation due to causal effect and pleiotropic 
effect are in the same direction. Reported are the estimated causal effects of $ on # (true 
value=0) under the same scenarios as Figure 2. Estimates of association coefficient for SNPs 
across two traits are simulated assuming an underlying four-component model for effect-size 
distribution (Scenario A, see Methods), where SNPs could have direct effects on neither traits, 
only on #, only on $, or on both with the effects being correlated. The proportion of valid 
instruments, i.e. the SNPs which have only direct effects on # as a proportion of the total 
number of SNPs which are associated with #, are fixed at 50% or 25%. Mean (standard 
deviation) of causal estimates are reported over 100 simulations. The true causal effect of # on 
$ is 0.2. %& = (: sample size of the study associated with #; %): sample size of the study 
associated with $. Standard error bars higher than 100 are truncated and marked with *true-
value. Results for (=50K or 100K and %& = 3%) are missing due to insufficient number of 
instruments (often ≤ 2). Source data are provided as a Source Data file.



 

Supplementary Figure 3. Reverse directional analysis of MRMix and alternative methods 
in simulation studies where the genetic correlation due to causal effect and pleiotropic 
effect are in opposite directions. Reported are the estimated causal effects of $ on # (true 
value=0) under the same scenarios as Figure 3. Estimates of association coefficient for SNPs 
across two traits are simulated assuming an underlying four-component model for effect-size 
distribution (Scenario A, see Methods), where SNPs could have direct effects on neither traits, 
only on #, only on $, or on both with the effects being correlated. The proportion of valid 
instruments, i.e. the SNPs which have only direct effects on # as a proportion of the total 
number of SNPs which are associated with #, are fixed at 50% or 25%. Mean (standard 
deviation) of causal estimates are reported over 100 simulations. The true causal effect of # on 
$ is -0.2. %& = (: sample size of the study associated with #; %): sample size of the study 
associated with $. Standard error bars higher than 100 are truncated and marked with *true-
value. Results for (=50K or 100K and %& = 3%) are missing due to insufficient number of 
instruments (often ≤ 2). Source data are provided as a Source Data file.



 
Supplementary Figure 4. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies with 0.04% SNPs of distinctly larger effects 
than others and genetic correlation due to causal effect and pleiotropic effect in the same 
direction. The true causal effect " = 0.2. Estimates of association coefficient for SNPs across 
two traits are simulated assuming an underlying four-component model for effect-size 
distribution for most SNPs, while allowing a small number of SNPs to have distinctly larger 
effects (Scenario B, see Methods and Supplementary Notes Section 4.1). SNPs could have 
direct effects on neither traits, only on #, only on $, or on both with the effects being correlated. 
The proportion of valid instruments, i.e. the SNPs which have only direct effects on # as a 
proportion of the total number of SNPs which are associated with #, are fixed at 50% or 25%. 
Mean (standard deviation) of causal estimates are reported over 100 simulations. %& = (: 
sample size of the study associated with #; %): sample size of the study associated with $. The 
average number of IVs, defined as the SNPs which reach genome-wide significance (z-test * <
5×1001) in the study associated with #, is 37, 138, 439, 1175 and 1809 for (=50k, 100k, 200k, 
500k and 1000k, respectively. Source data are provided as a Source Data file. 
  



 
Supplementary Figure 5. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies where 0.04% SNPs have distinctly larger 
effects than others and genetic correlation due to causal effect and pleiotropic effect are 
in opposite directions. The true causal effect " = −0.2. Estimates of association coefficient for 
SNPs across two traits are simulated assuming an underlying four-component model for effect-
size distribution for most SNPs, while allowing a small number of SNPs to have distinctly larger 
effects (Scenario B, see Methods and Supplementary Notes Section 4.1). SNPs could have 
direct effects on neither traits, only on #, only on $, or on both with the effects being correlated. 
The proportion of valid instruments, i.e. the SNPs which have only direct effects on # as a 
proportion of the total number of SNPs which are associated with #, are fixed at 50% or 25%. 
Mean (standard deviation) of causal estimates are reported over 100 simulations. %& = (: 
sample size of the study associated with #; %): sample size of the study associated with $. The 
average number of IVs, defined as the SNPs which reach genome-wide significance (z-test * <
5×1001) in the study associated with #, is 37, 138, 439, 1175 and 1809 for (=50k, 100k, 200k, 
500k and 1000k, respectively. Source data are provided as a Source Data file. 
  



 
Supplementary Figure 6. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies where effect sizes are generated from Laplace 
distribution with genetic correlation due to causal effect and pleiotropic effect in the 
same direction. The true causal effect " = 0.2. Estimates of association coefficient for SNPs 
across two traits are simulated assuming an underlying four-component model for effect-size 
distribution (Scenario C, see Methods), where SNPs could have direct effects on neither traits, 
only on #, only on $, or on both with the effects being correlated.  The proportion of valid 
instruments, i.e. the SNPs which have only direct effects on #, as a proportion of the total 
number of SNPs which are associated with #, are fixed at 50% or 25%. Mean (standard 
deviation) of causal estimates are reported over 100 simulations. %& = (: sample size of the 
study associated with #; %): sample size of the study associated with $. Standard error bars 
higher than 60 are truncated and marked with *true-value. The average number of IVs, defined 
as the SNPs which reach genome-wide significance (z-test * < 5×1001) in the study associated 
with #, is 46, 156, 387, 888 and 1368 for (=50k, 100k, 200k, 500k and 1000k, respectively. 
Source data are provided as a Source Data file. 
  



 
Supplementary Figure 7. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies where effect sizes follow Laplace distribution 
with genetic correlation due to causal effect and pleiotropic effect in opposite directions. 
The true causal effect " = −0.2. Estimates of association coefficient for SNPs across two traits 
are simulated assuming an underlying four-component model for effect-size distribution 
(Scenario C, see Methods), where SNPs could have direct effects on neither traits, only on #, 
only on $, or on both with the effects being correlated. The proportion of valid instruments, i.e. 
the SNPs which have only direct effects on #, as a proportion of the total number of SNPs which 
are associated with #, are fixed at 50% or 25%. Mean (standard deviation) of causal estimates 
are reported over 100 simulations. %& = (: sample size of the study associated with #; %): 
sample size of the study associated with $. Standard error bars higher than 60 are truncated 
and marked with *true-value. The average number of IVs, defined as the SNPs which reach 
genome-wide significance (z-test * < 5×1001) in the study associated with #, is 46, 156, 387, 
888 and 1368 for (=50k, 100k, 200k, 500k and 1000k, respectively. Source data are provided 
as a Source Data file. 
  



 
Supplementary Figure 8. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies where effect sizes are generated from T 
distribution with genetic correlation due to causal effect and pleiotropic effect in the 
same direction. The true causal effect " = 0.2. Estimates of association coefficient for SNPs 
across two traits are simulated assuming an underlying four-component model for effect-size 
distribution (Scenario C, see Methods), where SNPs could have direct effects on neither traits, 
only on #, only on $, or on both with the effects being correlated. The proportion of valid 
instruments, i.e. the SNPs which have only direct effects on #, as a proportion of the total 
number of SNPs which are associated with #, are fixed at 50% or 25%. Mean (standard 
deviation) of causal estimates are reported over 100 simulations. %& = (: sample size of the 
study associated with #; %): sample size of the study associated with $. Standard error bars 
higher than 60 are truncated and marked with *true-value. The average number of IVs, defined 
as the SNPs which reach genome-wide significance (z-test * < 5×1001) in the study associated 
with #, is 27, 142, 458, 1191 and 1816 for (=50k, 100k, 200k, 500k and 1000k, respectively. 
Source data are provided as a Source Data file.  



 
Supplementary Figure 9. Performance of MRMix and alternative methods for estimation 
of causal effects (!) in simulation studies where effect sizes follow T distribution with 
genetic correlation due to causal effect and pleiotropic effect in opposite directions. The 
true causal effect " = −0.2. Estimates of association coefficient for SNPs across two traits are 
simulated assuming an underlying four-component model for effect-size distribution (Scenario 
C, see Methods), where SNPs could have direct effects on neither traits, only on #, only on $, 
or on both with the effects being correlated.  The proportion of valid instruments, i.e. the SNPs 
which have only direct effects on #, as a proportion of the total number of SNPs which are 
associated with #, are fixed at 50% or 25%. Mean (standard deviation) of causal estimates are 
reported over 100 simulations. %& = (: sample size of the study associated with #; %): sample 
size of the study associated with $. Standard error bars higher than 60 are truncated and 
marked with *true-value. The average number of IVs, defined as the SNPs which reach 
genome-wide significance (z-test * < 5×1001) in the study associated with #, is 27, 142, 458, 
1191 and 1816 for (=50k, 100k, 200k, 500k and 1000k, respectively. Source data are provided 
as a Source Data file. 



Supplementary Tables 
 
Supplementary Table 1. Simulation studies showing accuracy of asymptotic standard 
error estimate. Estimates of association coefficient for SNPs across two traits are simulated 
assuming an underlying four-component model for effect-size distribution (Scenario A, see 
Methods), where SNPs could have direct effects on neither traits, only on #, only on $, or on 
both with the effects being correlated. The proportion of valid instruments, i.e. the SNPs which 
have only direct effects on # as a proportion of the total number of SNPs which are associated 
with #, are fixed at 50% or 25%. Mean of causal effect and standard error estimates are 
reported over 500 simulations. Source data are provided as a Source Data file. 
 
Settings	 89a	 Average	#	

of	IVs	(SD)b	
Mean	
estimate	 Empirical	SEc	 Mean	of		

analytical	SE	
95%	CI	
coveraged	

" = 0.2	
	
50%	valid	
IVs	

50K	 17	(4)	 0.109	 0.197	 6.028	 0.93	

100K	 102	(8)	 0.2	 0.072	 0.091	 0.98	

200K	 386	(12)	 0.206	 0.02	 0.025	 0.98	

500K	 1151	(14)	 0.209	 0.01	 0.011	 0.93	

1000K	 1802	(13)	 0.206	 0.007	 0.008	 0.94	

" = 0.2	
	
25%	valid	
IVs	

50K	 13	(3)	 0.08	 0.206	 2.929	 0.91	

100K	 100	(7)	 0.217	 0.112	 0.117	 0.94	

200K	 417	(13)	 0.271	 0.037	 0.048	 0.69	

500K	 1156	(15)	 0.217	 0.016	 0.02	 0.92	

1000K	 1826	(14)	 0.211	 0.009	 0.012	 0.94	

" = −0.2	
	
50%	valid	
IVs	

50K	 17	(4)	 -0.035	 0.2	 8.648	 0.9	

100K	 102	(8)	 -0.11	 0.073	 0.086	 0.81	

200K	 386	(12)	 -0.162	 0.019	 0.024	 0.71	

500K	 1151	(14)	 -0.18	 0.01	 0.011	 0.6	

1000K	 1802	(13)	 -0.19	 0.007	 0.008	 0.8	

" = −0.2	
	
25%	valid	
IVs	

50K	 13	(3)	 -0.003	 0.213	 4.639	 0.9	

100K	 100	(7)	 -0.053	 0.117	 0.272	 0.82	

200K	 417	(13)	 -0.1	 0.035	 0.045	 0.36	

500K	 1156	(15)	 -0.17	 0.015	 0.019	 0.69	

1000K	 1826	(14)	 -0.185	 0.01	 0.011	 0.86	
a %&: sample size of the study associated with #; sample size of the study associated with $ is %&/2.  
b IVs are defined as SNPs which reach genome-wide significance (z-test * < 5×1001) in the study associated with #. 
c Empirical SE of the causal estimate is calculated as the standard deviation of the causal estimates across 100 
simulations. 
d 95% confidence intervals are computed as "±1.96 (standard error estimate). 
 
 



Supplementary Table 2. Summary level data used in this paper. 
 

Trait	 Year	
published	 Sample	size	 Ref	 Accession	

date	
Exposure	
BMI	 2018	 681,275	 1	 5/3/2018	

Height	 2018	 693,529	 1	 6/5/2018	

LDL	 2013	 188,577	 2	 5/3/2018	

HDL	 2013	 188,577	 2	 5/3/2018	

TG	 2013	 188,577	 2	 5/3/2018	

Diastolic	blood	pressure	 2017	 317,756	 3	 5/19/2018	

Systolic	blood	pressure	 2017	 317,754	 3	 5/19/2018	

Age	at	menarche	 2017	 252,514	 4	 8/6/2018	

Years	of	education	 2018	 766,345	 5	 9/4/2018	

Outcome	
Coronary	artery	disease	 2015	 60,801/123,504a	 6	 5/4/2018	

Breast	cancer	 2017	 106,571/95,762a	 7	 5/28/2018	

Major	depressive	disorder	 2018	 59,851/113,154a	 8	 5/5/2018	
a cases/controls.  



Supplementary Table 3. Estimates and 95% confidence intervals for causal effects across exposures. The effect estimates 
represent s.d. unit increase in the outcome per s.d. unit increase in the genetically determined level of the exposure. 
 
Exposure Outcomea #	of	IVsb MRMix IVW Weighted	median Weighted	mode	 Egger LDSCc	

BMI 

LDL 964	 0.06	[0.01,	0.11]	 0.02	[-0.01,	0.06]	 0.05	[0.01,	0.08]	 0.07	[-0.07,	0.21]	 -0.1	[-0.32,	0.12]	 0.1	

HDL 964	 -0.25	[-0.3,	-0.2]	 -0.23	[-0.26,	-0.2]	 -0.23	[-0.26,	-0.19]	 -0.13	[-0.3,	0.04]	 -0.4	[-0.62,	-0.18]	 -0.22	

TG 964	 0.23	[0.18,	0.28]	 0.17	[0.13,	0.2]	 0.21	[0.17,	0.25]	 0.25	[0.08,	0.41]	 0.13	[-0.1,	0.36]	 0.04	

DBP 966	 0.29	[0.24,	0.34]	 0.26	[0.23,	0.29]	 0.27	[0.25,	0.29]	 0.22	[0.08,	0.36]	 0.38	[0.21,	0.55]	 0.32	

SBP 967	 0.16	[0.08,	0.24]	 0.15	[0.12,	0.17]	 0.16	[0.13,	0.18]	 0.19	[0.08,	0.3]	 0.33	[0.16,	0.49]	 0.2	

Age	at	
menarche 969	 -0.28	[-0.34,	-0.22]	 -0.32	[-0.35,	-0.29]	 -0.29	[-0.32,	-0.26]	 -0.22	[-0.31,	-0.13]	 -0.45	[-0.67,	-0.22]	 -0.35	

LDL	
DBP 153	 0.02	[-0.02,	0.06]	 0	[-0.03,	0.03]	 -0.01	[-0.03,	0.02]	 -0.02	[-0.08,	0.05]	 0.04	[-0.1,	0.17]	 -0.11	

SBP 153	 0.04	[0,	0.08]	 0.01	[-0.01,	0.04]	 0.02	[-0.01,	0.04]	 0.02	[-0.05,	0.09]	 0.07	[-0.05,	0.19]	 -0.08	

HDL 
DBP 197	 0.02	[-0.01,	0.05]	 -0.04	[-0.07,	-0.01]	 -0.02	[-0.04,	0.01]	 0	[-0.04,	0.03]	 0.05	[-0.08,	0.18]	 -0.17	

SBP 199	 -0.02	[-0.05,	0.01]	 -0.07	[-0.1,	-0.05]	 -0.04	[-0.06,	-0.01]	 0	[-0.05,	0.05]	 0.03	[-0.1,	0.16]	 -0.13	

TG 
DBP	 128	 -0.01	[-0.06,	0.04]	 0.01	[-0.03,	0.04]	 -0.01	[-0.04,	0.02]	 -0.04	[-0.09,	0.02]	 0.06	[-0.1,	0.22]	 0.07	

SBP	 128	 0.03	[-0.03,	0.09]	 0.03	[0,	0.06]	 0.02	[-0.01,	0.05]	 0.02	[-0.05,	0.09]	 0.07	[-0.08,	0.23]	 0.06	
a LDL: low-density lipoprotein cholesterol. HDL: high-density lipoprotein cholesterol. TG: triglycerides. DBP: diastolic blood pressure. SBP: systolic blood pressure. 
b IVs are defined as SNPs which reach genome-wide significance (z-test ! < 5×10'() in the study associated with ). 
c LDSC: LD score regression estimates of causal effects is defined as *+/ℎ./, the ratio between the estimated genetic covariance and the estimated heritability of 
the exposure (see Supplementary Notes for details). 
  



Supplementary Table 4. Reverse directional MR analysis for pairs of traits in Table 1 and Supplementary Table 3. 
  
Exposure Outcomea #	of	IVsb MRMix IVW Weighted	median Weighted	mode	 Egger LDSCc	

Coronary	
artery	
disease 

BMI 41	 0.04	[-0.01,	0.09]	 -0.04	[-0.07,	-0.01]	 -0.03	[-0.05,	-0.01]	 -0.01	[-0.05,	0.03]	 -0.05	[-0.27,	0.18]	 0.2	

LDL 36	 -0.04	[-0.1,	0.02]	 -0.06	[-0.12,	0.01]	 -0.07	[-0.12,	-0.02]	 -0.04	[-0.12,	0.03]	 -0.22	[-0.7,	0.27]	 0.09	

HDL 40	 0.02	[-0.03,	0.07]	 -0.07	[-0.13,	-0.02]	 -0.04	[-0.08,	0]	 -0.02	[-0.1,	0.05]	 0.05	[-0.35,	0.46]	 -0.2	

TG 41	 0.01	[-0.05,	0.07]	 0.03	[-0.02,	0.08]	 0.01	[-0.03,	0.05]	 0	[-0.06,	0.07]	 -0.31	[-0.64,	0.02]	 0.17	

SBP 41	 0	[-0.04,	0.04]	 0.06	[0.01,	0.1]	 0.02	[-0.01,	0.05]	 0.01	[-0.04,	0.07]	 -0.13	[-0.45,	0.18]	 0.23	

DBP 41	 -0.11	[-0.15,	-0.07]	 -0.02	[-0.08,	0.04]	 -0.07	[-0.1,	-0.03]	 -0.09	[-0.13,	-0.05]	 -0.33	[-0.74,	0.09]	 0.26	

Breast	
cancer	

BMI 83	 0.02	[0,	0.04]	 0	[-0.02,	0.02]	 0	[-0.01,	0.02]	 0.02	[-0.02,	0.05]	 -0.03	[-0.19,	0.13]	 -0.09	

Height 81	 0.01	[-0.07,	0.09]	 0	[-0.03,	0.04]	 0.01	[-0.01,	0.03]	 0.02	[-0.02,	0.05]	 -0.04	[-0.3,	0.21]	 0.07	

LDL 83	 0	[-0.06,	0.06]	 -0.01	[-0.04,	0.02]	 -0.01	[-0.05,	0.02]	 0	[-0.14,	0.14]	 -0.02	[-0.28,	0.25]	 0.01	

HDL 83	 0.05	[-0.07,	0.17]	 0.02	[-0.02,	0.05]	 0.02	[-0.02,	0.06]	 0.02	[-0.07,	0.11]	 -0.09	[-0.35,	0.17]	 0.07	

TG 83	 -0.04	[-0.08,	0]	 -0.02	[-0.05,	0.02]	 -0.02	[-0.06,	0.02]	 -0.04	[-0.12,	0.04]	 0.13	[-0.16,	0.42]	 -0.03	
Age	at	
menarche 94	 -0.01	[-0.05,	0.03]	 0	[-0.03,	0.02]	 -0.01	[-0.03,	0.01]	 -0.03	[-0.08,	0.03]	 -0.03	[-0.23,	0.18]	 0.14	

Major	
depressive	
disorder 

BMI 3	 -0.04	[-0.09,	0.01]	 0.04	[0,	0.09]	 0.01	[-0.06,	0.09]	 -0.03	[-0.1,	0.04]	 3.09	[0.52,	5.66]	 0.06	
Years	of	
education 4	 -0.12	[-0.18,	-0.06]	 -0.02	[-0.23,	0.19]	 -0.1	[-0.16,	-0.05]	 -0.12	[-0.16,	-0.08]	 -3.31	[-8.22,	1.59]	 -0.14	

LDL BMI	 149	 -0.02	[-0.06,	0.02]	 -0.04	[-0.06,	-0.01]	 -0.03	[-0.05,	-0.02]	 -0.03	[-0.07,	0.01]	 -0.13	[-0.26,	0]	 0.07	

HDL BMI	 187	 -0.04	[-0.07,	-0.01]	 -0.01	[-0.03,	0.02]	 -0.02	[-0.04,	0]	 -0.02	[-0.07,	0.02]	 -0.02	[-0.13,	0.09]	 -0.16	

TG BMI	 126	 -0.01	[-0.05,	0.03]	 -0.02	[-0.05,	0.01]	 -0.02	[-0.04,	0]	 -0.02	[-0.05,	0.02]	 0.06	[-0.1,	0.21]	 0.03	

DBP BMI	 220	 -0.06	[-0.12,	0]	 0.08	[0.04,	0.12]	 0.03	[0,	0.05]	 -0.02	[-0.09,	0.05]	 -0.24	[-0.51,	0.03]	 0.33	

SBP BMI	 207	 0.02	[-0.06,	0.1]	 0.05	[0.01,	0.09]	 0.02	[0,	0.05]	 0.02	[-0.06,	0.11]	 -0.3	[-0.56,	-0.03]	 0.21	
Age	at	
menarche BMI	 291	 -0.09	[-0.13,	-0.05]	 -0.15	[-0.18,	-0.12]	 -0.12	[-0.14,	-0.1]	 -0.09	[-0.14,	-0.05]	 0.1	[-0.11,	0.3]	 -0.26	

DBP LDL	 222	 -0.01	[-0.11,	0.09]	 -0.07	[-0.12,	-0.02]	 -0.06	[-0.11,	-0.01]	 0.12	[-0.06,	0.3]	 -0.09	[-0.41,	0.23]	 -0.16	

SBP LDL	 206	 -0.02	[-0.07,	0.03]	 -0.07	[-0.11,	-0.02]	 -0.06	[-0.11,	-0.01]	 -0.15	[-0.29,	-0.02]	 -0.54	[-0.86,	-0.22]	 -0.13	

DBP HDL	 224	 -0.06	[-0.14,	0.02]	 -0.08	[-0.13,	-0.03]	 -0.07	[-0.12,	-0.01]	 0.05	[-0.1,	0.2]	 0.27	[-0.09,	0.63]	 -0.26	

SBP HDL	 204	 0.02	[-0.05,	0.09]	 -0.06	[-0.12,	-0.01]	 -0.02	[-0.07,	0.04]	 0	[-0.13,	0.13]	 0.23	[-0.14,	0.61]	 -0.2	

DBP TG	 223	 0.1	[-0.04,	0.24]	 0.02	[-0.04,	0.07]	 0.05	[-0.01,	0.11]	 0.14	[-0.04,	0.32]	 -0.37	[-0.74,	0.01]	 0.1	

SBP TG	 206	 0.11	[0.01,	0.21]	 0.04	[-0.02,	0.09]	 0.07	[0.02,	0.13]	 0.12	[-0.03,	0.27]	 -0.09	[-0.43,	0.25]	 0.09	
a LDL: low-density lipoprotein cholesterol. HDL: high-density lipoprotein cholesterol. TG: triglycerides. DBP: diastolic blood pressure. SBP: systolic blood pressure b 

b IVs are defined as SNPs which reach genome-wide significance (z-test ! < 5×10'() in the study associated with ). 
c LDSC: LD score regression estimates of causal effects is defined as *+/ℎ./, the ratio between the estimated genetic covariance and the estimated heritability of 
the exposure (see Supplementary Notes for details). 
  



Supplementary Table 5. MRMix estimates under different SNP selection thresholds. 
Estimates of association coefficient for SNPs across two traits are simulated assuming an 
underlying four-component model for effect-size distribution (Scenario A, see Methods), where 
SNPs could have direct effects on neither traits, only on !, only on ", or on both with the effects 
being correlated. The proportion of valid instruments, i.e. the SNPs which have only direct 
effects on ! as a proportion of the total number of SNPs which are associated with !, is fixed at 
50%. Mean (standard deviation) of causal estimates are reported over 100 simulations. The true 
causal effect is 0.2; the ratio of sample size of the study associated with ! and " (denoted by #$ 
and #% respectively) is fixed at 2:1. Source data are provided as a Source Data file. 
 

 &' 50K 100K 200K 500K 1000K 

SNP	
selection	
and	effect	
estimation	
performed	
on	the	same	
dataset	
associated	
with	!	

MRMix	p<0.005 0.05	(0.02) 0.1	(0.01) 0.13	(0.01) 0.17	(0.01) 0.18	(0.01) 
MRMix	p<5e-04 0.11	(0.04) 0.16	(0.02) 0.19	(0.01) 0.19	(0.01) 0.2	(0.01) 
MRMix	p<5e-06 0.16	(0.12) 0.19	(0.04) 0.2	(0.02) 0.2	(0.01) 0.2	(0.01) 
MRMix	p<5e-08 0.14	(0.19) 0.19	(0.06) 0.2	(0.02) 0.2	(0.01) 0.2	(0.01) 
IVW 0.32	(0.09) 0.38	(0.04) 0.41	(0.02) 0.43	(0.02) 0.44	(0.01) 
Weighted	median 0.31	(0.12) 0.32	(0.04) 0.32	(0.03) 0.3	(0.01) 0.29	(0.01) 
Weighted	mode 0.24	(0.16) 0.21	(0.06) 0.2	(0.04) 0.2	(0.02) 0.2	(0.01) 
Egger 0.14	(1.66) 0.39	(0.31) 0.43	(0.11) 0.44	(0.06) 0.45	(0.04) 
Average	#	of	IVsb 14	(4) 105	(10) 400	(18) 1134	(28) 1779	(32) 

SNP	
selection	
and	effect	
estimation	
performed	
on	two	
independent	
datasets	
associated	
!a	

MRMix	p<0.005 0.15	(0.06) 0.19	(0.03) 0.2	(0.02) 0.2	(0.01) 0.2	(0.01) 
MRMix	p<5e-04 0.21	(0.09) 0.22	(0.03) 0.21	(0.02) 0.2	(0.01) 0.2	(0.01) 
MRMix	p<5e-06 0.18	(0.18) 0.23	(0.04) 0.22	(0.02) 0.21	(0.01) 0.2	(0.01) 
MRMix	p<5e-08 0.11	(0.25) 0.22	(0.06) 0.22	(0.02) 0.21	(0.01) 0.2	(0.01) 
IVW 0.44	(0.13) 0.44	(0.05) 0.44	(0.03) 0.44	(0.02) 0.44	(0.01) 
Weighted	median 0.4	(0.16) 0.37	(0.06) 0.35	(0.03) 0.31	(0.02) 0.29	(0.01) 
Weighted	mode 0.32	(0.19) 0.25	(0.07) 0.21	(0.04) 0.2	(0.02) 0.2	(0.01) 
Egger 0.27	(0.42) 0.25	(0.17) 0.32	(0.09) 0.39	(0.05) 0.42	(0.04) 
Average	#	of	IVs 14	(4) 104	(10) 400	(17) 1138	(28) 1777	(33) 

a The dataset for SNP selection and the dataset for effect estimation have the same sample size. 
b IVs are defined as SNPs which reach genome-wide significance (z-test ( < 5×10./) in the study associated with !. 
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